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Abstract: Spatial variable co-estimation is crucial in engineering and fields like geology/mining.
Traditional methods like Kriging have limitations with complex correlations. This paper studies a
method for spatial attribute data co-estimation. It preprocesses data, divides it into grids, and
interpolates. By comparing BN-NN and KRF, it finds KRF is more accurate and robust, and it
effectively estimates variables with insufficient sampling. This research provides a more reliable tool
for related fields, enabling more accurate spatial data analysis and prediction, which is of great
significance for optimizing resource exploration, environmental monitoring, and urban planning, and
promoting the development of these fields.

1. Introduction

With the development of technology, spatial statistics has become crucial in fields such as
geological exploration, environmental monitoring, and agricultural research. However, the problem
of limited sample data for spatial variable estimation persists. The co-estimation method, especially
the co-Kriging approach, has been developed but faces challenges like high computational complexity.
Fortunately, artificial intelligence and machine learning offer new ways to solve these issues|[1].

Previous studies in this domain have numerous shortcomings. Ahn et al. focused only on single
variables, disregarding valuable co-variable information[2]. Fuentes et al.'s use of linear models was
ineffective in capturing nonlinear relationships in spatial data, leading to inaccurate estimations[3].
Hossain and Timmer lacked a comprehensive model and parameter comparison and optimization
process, resulting in suboptimal model selection[4]. Chen and Zhuang failed to consider data
heterogeneity, introducing biases[5]. Additionally, Tzoumas et al. couldn't handle outliers properly,
further reducing the accuracy and reliability of the estimations[6].

This paper makes the following improvements and innovations. Firstly, a comprehensive data
preprocessing method is proposed to ensure the quality and integrity of the data, which provides a
solid foundation for subsequent analysis. Secondly, multiple methods are used to analyze the
correlation between the target variable and the co-variables, and the most relevant co-variables are
selected more accurately. Finally, by comparing different estimation methods, the Kriging random
forest (KRF) method with higher accuracy and robustness is determined, which provides a more
effective solution for spatial variable co-estimation.

2. Methodology
2.1. Sampling and Interpolation

In this spatial variable analysis, the research area is a square with X from 51250.0000m to
64500.0000m and Y from 78750.0000m to 92000.0000m, divided into 5S0mx50m grids for sampling.
Data preprocessing involves collecting and loading the target and co-variable data, reshaping them
into a matrix for consistency, and merging them. A resampling model (10% - 90%) creates datasets
with unselected points as NaN. The "natural neighborhood interpolation" estimates unsampled values
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using the formula[7]:
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where f(x) is the estimate at x, w; is the weight of x;, and f (x;) is the known value at x;.
2.2. Variable Correlation Analysis

To analyze the correlation between the target variable and potential co-variables, the random forest
method is utilized. Before applying this method, the data is preprocessed by cleaning, feature
selection, and standardization to ensure its quality and suitability for analysis[8].

The random forest model is constructed by recursively building decision trees. In this process, the
best split point for each feature is determined to minimize the impurity of the child nodes after
splitting. Gini impurity is calculated using the formula:

Gini(D) =1 — Z p? (2)

where D is the data set, ¢ is the number of categories, and p; is the proportion of the i-th category
samples in the data set. Information gain is calculated using the formula:
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where D is the data set, A is the feature, v is all possible values of the feature, DV is the subset of
the data set when the feature takes the value v, and H(D) is the entropy of the data set:
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The feature importance is determined by calculating the contribution of each feature in the random
forest model. For each decision tree, the out-of-bag samples (i.e., the unselected samples) are used
for prediction, and the prediction error is calculated. The average of the out-of-bag errors of all
decision trees is calculated. For each feature, its value is randomly shuffled, and the out-of-bag error
is recalculated. The difference between the out-of-bag errors before and after shuffling is calculated.
The greater the difference, the higher the importance of the feature. The formula is:

Importance(A) = O0OB_Error(Agnyfreqd) — OOB_Error(Aoriginal)

where OOB_Error is the out-of-bag error, Ag,ufreq 18 the feature with its value randomly shuffled,
and A iginal 18 the original feature.

When the node's sample number is below a threshold or its impurity is low enough, the decision
tree construction stops. Pruning is done by setting parameters like max depth and min sample number
to prevent overfitting.

For regression, the final prediction is the average of multiple decision trees' results; for
classification, it's the majority vote. Feature importance is calculated by using out-of-bag samples for
prediction, getting the average error, shuffling each feature's values, recalculating the error, and taking
the difference between the original and shuftled errors.

2.3. Model Comparison and Selection

In this section, Kriging - random forest (KRF) and Bayesian neural network (BN - NN) are
compared. For KRF, data loading and preprocessing are done first. Then, different sampling rates
(0.1 - 0.9) are set for resampling the target and co-variables using rand sample function. The
fitcensemble function trains the random forest model with selected parameters for stability. In
prediction, an appropriate batch size (e.g., 1000) is set and results are combined[9],[10].
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For BN - NN, after similar data handling, the fitcnb function trains the Bayesian network first.
Then, its output and co-variables are used to train the neural network with fitnet function and selected
hidden nodes. Batch prediction and error calculation steps are like KRF's.

Error metrics such as mean absolute error (MAE) is calculated using the formula:

n
1
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where y; is the true value, ¥; is the predicted value, and n is the sample size.
Mean square error (MSE) is calculated using the formula:
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Root mean square error (RMSE) is calculated using the formula:

RMSE = VvMSE (7

The coefficient of determination (R?) is calculated using the formula:
_ Yiss 0 —9)°
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where ¥ is the average value of the target variable.

R*=1 (8)

3. Results and Discussion
3.1. Sampling and Interpolation Results

The distribution of the target variable across the research area is clearly depicted in the contour
maps generated from the sampling and interpolation process , as shown in Figure 1. By analyzing the
relationship between the sampling density and the mean absolute error (MAE), it is found that the
error tends to decrease as the sampling density increases. For instance, at a 90% sampling density,
the MAE is relatively low, suggesting a more accurate estimation. This is because a higher sampling
density provides more data points, enabling a better representation of the variable's distribution. In
contrast, at a 10% sampling rate, significant errors occur due to the scarcity of data points, as there is
insufficient information to accurately capture the variable's behavior.

Original and Interpolated Data Comparison
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Figure 1 Interpolation Result Graph.
3.2. Variable Correlation Analysis Results

Using the random forest model, the correlations between the target variable and each co-variable
are calculated. It is determined that co-variable 1 and co-variable 3 have the strongest correlations
with the target variable , as shown in Figure 2. This finding is crucial as it allows for the selection of
the most relevant co-variables for subsequent co-estimation. By focusing on these highly correlated
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co-variables, the estimation accuracy can be improved since they are more likely to contain valuable
information related to the target variable.
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Figure 2 Collaborative Variable Correlation Graph
3.3. Model Comparison and Selection Results

The interpolation results of both the KRF and BN - NN methods at different sampling rates are
presented. It is observed that with the increase of the sampling rate, the smoothness and accuracy of
the interpolation results of both methods improve, as shown in Figure 3 and Figure 4. However, in
terms of error metrics such as MAE, MSE, RMSE, and the coefficient of determination (R?), the KRF
method demonstrates better performance. Specifically, at low sampling rates, the KRF method
maintains relatively low errors and better stability compared to the BN - NN method. The sensitivity
analysis also indicates that the KRF method is less sensitive to the change of the sampling rate, which
shows its robustness. In the robustness test, when the noise level increases, the KRF method shows
smaller increases in the estimation error, further confirming its superiority in dealing with complex
data conditions.
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Figure 3 Bayesian Result Graph
3.4. Robustness Test Results
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Figure 4 Interpolation Result Graph

The average absolute errors (MAE) of BN - NN and KRF at different noise levels and sampling
rates are shown in Figure 5. With the increase of the sampling rate, the MAE of both methods is
significantly reduced, indicating that a higher sampling rate can significantly improve the accuracy
of the interpolation results. When the noise level increases, the KRF method shows smaller increases
in the estimation error compared to BN - NN, demonstrating its better robustness in dealing with
complex data conditions.
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3.5. Sensitivity Analysis Results

The estimation errors at different sampling rates are shown in Figure 6. With the increase of the
sampling rate, the estimation error gradually decreases, indicating that a higher sampling rate can
significantly improve the prediction accuracy of the model. The KRF method is less sensitive to the
change of the sampling rate compared to BN - NN, further highlighting its stability and reliability in
the estimation process.
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In conclusion, the results of this study suggest that the KRF method is a more effective and reliable
approach for spatial variable co-estimation, providing valuable insights and tools for related research
and applications.

4. Conclusion

This paper studies the spatial variable co-estimation method based on Kriging interpolation and
random forest. Through data preprocessing, model establishment and solution, and result analysis, it
is found that the Kriging - random forest (KRF) method is an effective and optimal method for spatial
variable co-estimation. It can effectively deal with the problems of limited sample data and complex
spatial correlations, and has higher accuracy and robustness. This research provides a new method
and idea for the field of spatial variable estimation, and has certain guiding significance for practical
applications such as geological exploration and environmental monitoring. Future research can
further explore the application of this method in different fields and improve the performance of the
model.
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